Disinfection of Bacillus spp. spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis
نویسندگان
چکیده
During the last decade the use of titanium dioxide has been the focus of water purification studies for photocatalytic degradation of organic compounds. Various studies have shown that TiO2 photocatalysis is a very efficient process for removal (by mineralization) of a large variety of hazardous chemicals. However, the potential use of this technology for water disinfection has been essentially unexplored. Only a few papers have described the photocatalytic destruction of microbial cells, such as E. coli bacteria, MS2 bacteriophages and recently B. fragilis phages, D. radiophilus. The mechanism of photocatalysis in the presence of TiO2 is the enhanced formation of hydroxyl (HO·) radicals, active in oxidation processes. The HO· radicals have a significant effect on chemical oxidation of anthropogenic organic compounds in the environment. Complete mineralization of many organic substances is possible in aqueous systems, when sufficient HO· radical flux can be generated in situ. Various water treatment technologies inherently produce HO· radicals in relatively minuscule quantities (i.e., < 10–12 M). Examples of such processes include ozonation, direct photolysis of hydrogen peroxide, and radiolysis. In contrast to the above system, steadystate HO· concentrations of the order of 10–9 M can be generated in UV-irradiated aqueous suspensions of immobilised particles of titanium dioxide. The use of TiO2 for microbial inactivation and disinfection of potable water is suggested, since free radicals such as HO· might act as a strong biocide, because of its high oxidation potential and nonselective reactivity. In the present study, two bacilli strain spores (B. subtilis and B. cereus) were tested for photocatalytic inactivation in water as simulators of B. anthracis spores. B. subtilis was selected for its high resistance to disinfection and B. cereus for its phylogenetic proximity to B. anthracis. Two UV sources were used: 1) monochromatic UV lamp with irradiation intensity of 7mW/cm2 at 365nm; and 2) Natural sunlight (irradiation intensity at 365nm of ~4 mW/cm2 between 12:00 and 14:00 hours). TiO2 at 0.25g/L was found to be the optimal concentration needed for the reduction of four orders of magnitude in B. subtilis spores viability after irradiation for 300 minutes. B. cereus subjected to similar photocatalysis conditions was reduced by five orders of magnitude revealing lower endurance to this process. Comparison of artificial and natural (sunlight) UV irradiation source on B. subtilis resulted in increased inactivation of 5 orders of magnitude in favour of sunlight. Combined inactivation by photocatalytic process (UV 365nm) and detrimental activity of UV at 265nm can explain this result. There was no difference between the two irradiation sources when B. cereus was tested. Under both irradiation types, B. cereus was reduced by four orders of magnitude during 300 minutes time interval. Additional experiments including TiO2 concentration, irradiation intensity, water depth, initial spore number, etc. were performed. Taking into account that B. anthracis spores have hydrophobic properties, the photocatalytic process seems to be the method of choice in water disinfection eliminating the possibility of by products formation such as halogens.
منابع مشابه
Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination.
Three species of Bacillus were evaluated as potential surrogates for Bacillus anthracis for determining the sporicidal activity of chlorination as commonly used in drinking water treatment. Spores of Bacillus thuringiensis subsp. israelensis were found to be an appropriate surrogate for spores of B. anthracis for use in chlorine inactivation studies.
متن کاملDetermination of anthrax foci through isolation of Bacillus anthracis form soil samples of different regions of Iran
To isolate and detect anthrax spores form soil in different regions of Iran in order to find the anthrax foci‚ a total of 668 environmental specimens were collected during 2003-2004. Bacterial endospores were extracted from soil specimens via flotation in distilled water, incubation at room temperature, filtration, heat shock and culture on blood agar and selective PLET media. Bacillus anthraci...
متن کاملIsolation of Anthrax Spores from Soil in Endemic Regions of Isfahan, Iran
To isolate and detect anthrax spores from soil in different regions of Isfahan, Iran a total of 60 environmental specimens were collected during 2003. Bacterial endospores were extracted via flotation in distilled water and were cultured on blood agar and selective PLET media. Bacillus anthracis was identified using bacteriological and biological tests. Viable Bacillus anthracis spores were iso...
متن کاملSterilization effect of UV light on Bacillus spores using TiO(2) films depends on wavelength.
UV light and photocatalysts such as titanium dioxide (TiO(2)) and silver (Ag) are useful for disinfection of water and surfaces. However, the effect of UV wavelength on photocatalytic disinfection of spores is not well understood. Inactivation of Bacillus spores has been examined using different UV wavelengths and TiO(2) or TiO(2)/Ag composite materials. The level of UVA disinfection of Bacillu...
متن کاملPhotocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes
Disinfection of drinking water is commonly carried out by chlorination, however research has shown this method to be ineffective against certain rotozoan, viral and biofilm forming microorganisms. Furthermore, chlorination can result in the formation of mutagenic disinfection by-products. emiconductor photocatalysis may be a possible alternative to chlorination for point-of-use drinking water d...
متن کامل